
Postprint, January 2020

Automated Discovery of Declarative Process Models
with Correlated Data Conditions

Volodymyr Lenoa,b, Marlon Dumasa, Fabrizio Maria Maggia, Marcello La
Rosab, Artem Polyvyanyyb

aUniversity of Tartu, Liivi 2, 50409, Tartu, Estonia
bUniversity of Melbourne, Parkville, VIC, 3010, Australia

Abstract

Automated process discovery techniques enable users to generate business pro-
cess models from event logs extracted from enterprise information systems. Tra-
ditional techniques in this field generate procedural process models (e.g., in the
BPMN notation). When dealing with highly variable processes, the resulting
procedural models are often too complex to be practically usable. An alter-
native approach is to discover declarative process models, which represent the
behavior of the process as a set of constraints. Declarative process discovery
techniques have been shown to produce simpler models than procedural ones,
particularly for processes with high variability. However, the bulk of approaches
for automated discovery of declarative process models focus on the control-flow
perspective, ignoring the data perspective. This paper addresses the problem
of discovering declarative process models with data conditions. Specifically, the
paper tackles the problem of discovering constraints that involve two activities
of the process such that each of these two activities is associated with a condi-
tion that must hold when the activity occurs. The paper presents and compares
two approaches to the problem of discovering such conditions. The first ap-
proach uses clustering techniques in conjunction with a rule mining technique,
while the second approach relies on redescription mining techniques. The two
approaches (and their variants) are empirically compared using a combination
of synthetic and real-life event logs. The experimental results show that the
former approach outperforms the latter when it comes to re-discovering con-
straints artificially injected in a log. Also, the former approach is in most of the
cases more computationally efficient. On the other hand, redescription mining
discovers rules with higher confidence (and lower support) suggesting that it
may be used to discover constraints that hold for smaller subsets of cases of a
process.

Email addresses: leno@ut.ee (Volodymyr Leno), marlon.dumas@ut.ee (Marlon Dumas),
f.m.maggi@ut.ee (Fabrizio Maria Maggi), marcello.larosa@unimelb.edu.au (Marcello La
Rosa), artem.polyvyanyy@unimelb.edu.au (Artem Polyvyanyy)



1. Introduction

Automated process discovery techniques take as input an event log recording
the execution of instances of a business process over a period of time, and pro-
duce as output a process model that captures the behavior observed in the log.
The process models produced by automated process discovery techniques mainly
fall into two categories: procedural and declarative. The dichotomy procedural
versus declarative when choosing the most suitable language to represent the
output of a process discovery technique has been widely studied [1, 2]: procedu-
ral languages are suitable for processes with low variability (i.e., relatively low
number of variants), whereas declarative languages are suitable for processes
with high variability [3, 4, 5, 6].

This paper focuses on the problem of discovering declarative process models
from event logs. The paper tackles a still open challenge in this field, namely
that of discovering multi-perspective declarative process models, i.e., models
that take into account both the control-flow perspective (which events occur
and in which order) and the data perspective, specifically the (data) conditions
that hold when a given event occurs. For example, in the context of a loan ap-
plication process, we aim at discovering rules like: “when an applicant having a
salary lower than 24 000 euros per year submits a loan application, eventually an
assessment of the application will be carried out, and the type of the assessment
is complex.” In this example, we have that a response Declare constraint (the
submission of an application is eventually followed by an assessment) is satisfied
only when both a condition on the payload of the activation (i.e., the amount
associated to the submission of the application) and a condition on the target
(on the type of assessment) is satisfied. The former condition is called an activa-
tion condition, the latter is called a target condition, and when both conditions
are present in a Declare constraint, we say that the constraint contains two
correlated data conditions.

The paper proposes two approaches for automated discovery of declarative
process models with correlated data conditions. Both techniques start by dis-
covering a set of frequent constraints from an event log. A frequent constraint
is a constraint having a high number of constraint instances, i.e., pairs of events
(one activation and one target) satisfying it. In the first approach, we cluster the
target payloads to find groups of targets with similar payloads. These groups
are used as labels for rule mining. In particular, the labels together with the
features extracted from the activation payloads are used as input of a classifica-
tion problem to discover correlations between the activation payloads and the
target payloads. In the second approach, we apply redescription mining to sets
of activation and target payloads to find the rules that correlate these two sets.

This article is an extended and revised version of a conference paper [7]. The
conference version focused on the first type of approach (clustering followed by
rule discovery). In this article, we present an alternative approach based on
redescription mining and we empirically evaluate the tradeoffs between these
two approaches and their variants. This article also includes a more exten-
sive validation that considers both the accuracy and scalability of the proposed

2



approaches.
The paper is structured as follows. Section 2 provides the necessary back-

ground to understand the rest of the paper, and presents related work. Sec-
tion 3 introduces a running example used to illustrate the proposed techniques.
Section 4 presents the proposed techniques, while Section 5 discusses their eval-
uation on synthetic and real-life logs. Finally, Section 6 concludes the paper
and spells out directions for future work.

2. Background and Related Work

This section introduces the notion of event log (Section 2.1). It then de-
fines the declarative process modeling notations used in the rest of the paper
(Sections 2.2 and Section 2.3) and provides an overview of related work (Sec-
tion 2.4).

2.1. Event Log

The starting point for process mining is an event log. Event logs record
the execution of businesses processes. Each event in a log refers to an activity
(i.e., a well-defined step in a business process) and is related to a particular
case (i.e., a process instance). Events that belong to a case are ordered and
constitute a single “run” of the process (often referred to as a trace of events).
Event logs may store additional information about events such as resources
(i.e., people and/or devices) executing or initiating the activities, timestamps
indicating when the events occur, and data elements associated with the events.
Data elements stored in the log can be either event attributes, i.e., data produced
by the activities of a business process, or case attributes, namely data that are
associated to the whole process instance. In this paper, we assume that all
attributes are globally visible and can be accessed/manipulated by all activity
instances executed inside the case.

Let Σ be the set of activities. Then, t ∈ Σ∗ is a trace over Σ, i.e., a sequence
of activities that encodes a case. An event log E is a multi-set over Σ∗.

2.2. Declare

Declare is a declarative process modeling language originally introduced
by Pesic and van der Aalst in [3]. Instead of explicitly specifying the flow of the
interactions among process activities, Declare describes a set of constraints
that must be satisfied throughout the process execution. The possible orderings
of activities are implicitly specified by constraints and anything that does not
violate them is possible during execution. In comparison with procedural ap-
proaches that produce “closed” models, i.e., all that is not explicitly specified is
forbidden, Declare models are “open” and tend to offer more possibilities for
the execution. In this way, Declare enjoys flexibility and is very suitable for
highly dynamic processes characterized by high complexity and variability due
to the changeability of their execution environments.

3



Table 1: Semantics for Declare templates

Template LTL semantics Activation

responded existence G(A→ (OB ∨ FB)) A

response G(A→ FB) A
alternate response G(A→ X(¬AUB)) A
chain response G(A→ XB) A

precedence G(B → OA) B
alternate precedence G(B → Y(¬BSA)) B
chain precedence G(B → YA) B

not responded existence G(A→ ¬(OB ∨ FB)) A
not response G(A→ ¬FB) A
not precedence G(B → ¬OA) B
not chain response G(A→ ¬XB) A
not chain precedence G(B → ¬YA) B

A Declare model consists of a set of constraints over activities. Con-
straints, in turn, are based on templates. Templates are patterns that define
parameterized classes of properties, and constraints are their concrete instan-
tiations (we indicate template parameters with capital letters and concrete ac-
tivities in their instantiations with lower case letters). Templates have graph-
ical representations and their semantics has been captured using various for-
malisms [4], making them verifiable and executable. Each constraint inherits
the graphical representation and semantics from its template.

Table 1 summarizes some Declare templates (the reader can refer to [8]
for a full description of the language). Here, the F, X, G, and U LTL (future)
operators have the following intuitive meaning: formula Fφ1 means that φ1

holds sometime in the future, Xφ1 means that φ1 holds in the next position,
Gφ1 says that φ1 holds forever in the future, and, lastly, φ1Uφ2 means that
sometime in the future φ2 will hold and until that moment φ1 holds (with φ1

and φ2 LTL formulas). The O, and Y LTL (past) operators have the following
meaning: Oφ1 means that φ1 holds sometime in the past, and Yφ1 means that
φ1 holds in the previous position.

The major benefit of using templates is that analysts do not have to be
aware of the underlying logic-based formalization to understand the models.
They work with the graphical representation of templates, while the underlying
formulas remain hidden.

Consider, for example, the response constraint G(a→ Fb). This constraint
indicates that if a occurs, b must eventually follow. Therefore, this constraint is
satisfied for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉, and t3 = 〈a, b, c, b〉,
but not for t4 = 〈a, b, a, c〉 because, in this case, the second instance of a is not
followed by a b. Note that, in t2, the considered response constraint is satisfied
in a trivial way because a never occurs. In this case, we say that the constraint
is vacuously satisfied [9]. In [10], the authors introduce the notion of behavioral
vacuity detection according to which a constraint is non-vacuously satisfied in a
trace when it is activated in that trace. Intuitively, an activation of a constraint
in a trace is an event whose occurrence imposes, because of that constraint,

4



Table 2: Semantics for MP-Declare constraints

Template MFOTL Semantics

responded existence G(∀x.((A ∧ ϕa(x))→ (OI(B ∧ ∃y.ϕc(x, y)) ∨ FI(B ∧ ∃y.ϕc(x, y)))))

response G(∀x.((A ∧ ϕa(x))→ FI(B ∧ ∃y.ϕc(x, y))))
alternate response G(∀x.((A ∧ ϕa(x))→ X(¬(A ∧ ϕa(x))UI(B ∧ ∃y.ϕc(x, y)))))
chain response G(∀x.((A ∧ ϕa(x))→ XI(B ∧ ∃y.ϕc(x, y)))

precedence G(∀x.((B ∧ ϕa(x))→ OI(A ∧ ∃y.ϕc(x, y)))
alternate precedence G(∀x.((B ∧ ϕa(x))→ Y(¬(B ∧ ϕa(x))SI(A ∧ ∃y.ϕc(x, y))))
chain precedence G(∀x.((B ∧ ϕa(x))→ YI(A ∧ ∃y.ϕc(x, y)))

not responded existence G(∀x.((A ∧ ϕa(x))→ ¬(OI(B ∧ ∃y.ϕc(x, y)) ∨ FI(B ∧ ∃y.ϕc(x, y)))))
not response G(∀x.((A ∧ ϕa(x))→ ¬FI(B ∧ ∃y.ϕc(x, y))))
not precedence G(∀x.((B ∧ ϕa(x))→ ¬OI(A ∧ ∃y.ϕc(x, y)))
not chain response G(∀x.((A ∧ ϕa(x))→ ¬XI(B ∧ ∃y.ϕc(x, y)))
not chain precedence G(∀x.((B ∧ ϕa(x))→ ¬YI(A ∧ ∃y.ϕc(x, y)))

some obligations on other events (targets) in the same trace. For example, a
is the activation for the response constraint G(a → Fb) and b is the target,
because the execution of a forces b to be executed, eventually. In Table 1, for
each template, the corresponding activation is specified.

An activation of a constraint can be a fulfillment or a violation for that con-
straint. When a trace is perfectly compliant with respect to a constraint, every
activation of the constraint in the trace leads to a fulfillment. Consider, again,
the response constraint G(a→ Fb). In trace t1, the constraint is activated and
fulfilled twice, whereas, in trace t3, the same constraint is activated and fulfilled
only once. On the other hand, when a trace is not compliant with respect to a
constraint, an activation of the constraint in the trace can lead to a fulfillment
but also to a violation (at least one activation leads to a violation). In trace t4,
for example, the response constraint G(a→ Fb) is activated twice, but the first
activation leads to a fulfillment (eventually b occurs) and the second activation
leads to a violation (b does not occur subsequently). An algorithm to discrimi-
nate between fulfillments and violations for a constraint in a trace is presented
in [10].

Tools implementing process mining approaches based on Declare are pre-
sented in [11]. The tools are implemented as plug-ins of the process mining
framework ProM.

2.3. Multi-Perspective Declare

In this section, we illustrate a multi-perspective version of Declare (MP-
Declare) introduced in [12]. This semantics is expressed in Metric First-Order
Linear Temporal Logic (MFOTL) and is shown in Table 2.

We describe here the semantics informally and we refer the interested reader
to [12] for more details. To explain the semantics, we introduce some preliminary
notions.

The first concept we use is the one of payload of an event. Consider, for
example, that the execution of an activity Submit Loan Application (S)
is recorded in an event log and, after the execution of S at timestamp τS ,

5



the attributes Salary and Amount have values 12 500 and 55 000. In this
case, we say that, when S occurs, two special relations are valid event(S) and
pS(12 500, 55 000). In the following, we identify event(S) with the event S itself
and we call (12 500, 55 000), the payload of S.

Note that all the templates in MP-Declare in Table 2 have two param-
eters, an activation and a target (see also Table 1). The standard semantics
of Declare is extended by requiring two additional conditions on data, i.e.,
the activation condition ϕa and the correlation condition ϕc. As an example,
we consider the response constraint “activity Submit Loan Application is
always eventually followed by activity Assess Application” having Submit
Loan Application as activation and Assess Application as target. The
activation condition is a relation (over the variables corresponding to the global
attributes in the event log) that must be valid when the activation occurs. If
the activation condition does not hold the constraint is not activated. The acti-
vation condition has the form pA(x)∧ ra(x), meaning that when A occurs with
payload x, the relation ra over x must hold. For example, we can say that when-
ever Submit Loan Application occurs, and the amount of the loan is higher
than 50 000 euros and the applicant has a salary lower than 24 000 euros per
year, eventually an assessment of the application must follow. In case Submit
Loan Application occurs but the amount is lower than 50 000 euros or the
applicant has a salary higher than 24 000 euros per year, the constraint is not
activated.

The correlation condition is a relation that must be valid when the target
occurs. It has the form pB(y) ∧ rc(x, y), where rc is a relation involving, again,
variables corresponding to the (global) attributes in the event log but, in this
case, relating the payload of A and the payload of B. A special type of correla-
tion condition has the form pB(y) ∧ rc(y), which we call target condition, since
it does not involve attributes of the activation.

In this paper, we aim at discovering constraints that correlate an activation
and a target condition. For example, we can find that whenever Submit Loan
Application occurs, and the amount of the loan is higher than 50 000 euros
and the applicant has a salary lower than 24 000 euros per year, then eventually
Assess Application must follow, and the assessment type will be Complex
and the cost of the assessment higher than 100 euros.

Finally, in MP-Declare, also a time condition can be specified through
an interval (I = [τ0, τ1)) indicating the minimum and the maximum temporal
distance allowed between the occurrence of the activation and the occurrence of
the corresponding target.

2.4. Discovery of Data-Aware Declarative Process Models

In [13], the authors propose a data-aware technique for the discovery of
declarative models. The technique uses a data-aware extension of the Declare
language defined in terms of LTL-FO (First Order Linear Temporal Logic).
Given a data constraint, the approach can be used to discover data conditions
that discriminate cases in which the constraint is satisfied and cases in which it
is violated.

6



In [14], the authors use correlations to prune a discovered declarative model
and to disambiguate event associations. As a result, the discovered process
models only show the more meaningful constraints and become more readable.

The work in [15] presents another approach for the multi-perspective dis-
covery of declarative process models. This work is based on RelationalXES, a
relational database architecture for storing event log data. Once stored, rela-
tional event data can be queried with conventional SQL. Queries capture the
semantics of MP-Declare and can be customized. However, the queries have
to be manually specified.

One existing technique for the discovery of imperative process models can
identify conditions in the decision rules (a.k.a. branching points), refer to [16].
The technique combines existing methods for discovering process models (e.g.,
Petri nets) and decision trees. The identified conditions compare variables with
some constant values. This technique cannot be used to discover a condition
over more than one variable. The technique presented in [17] overcomes this
limitation by combining standard methods for decision tree learning with a
technique for discovering the (likely) invariants of execution logs [18].

3. Running Example

Figure 1 shows a fictive MP-Declare model that we will use as a running
example throughout this paper.

Figure 1: Running Example

This example models a process for loan applications in a bank. When an
applicant submits a loan application with an amount higher than 50 000 euros

7



and she has a salary lower than 24 000 euros per year, eventually an assessment
of the application will be carried out. The assessment will be complex and
the cost of the assessment higher than 100 euros. This behavior is described
by response constraint C1 in Figure 1. When an applicant submits a loan
application with an amount higher than 100 000 euros, eventually a complex
assessment with cost higher than 100 euros is performed (C2). In other cases, the
simple assessment will be carried out with the cost of assessment not exceeding
100 euros (constraints C3 and C4). The outcome is always positive when a salary
of an applicant is greater than 70 000. This is reflected in response constraint
C5. Outside the application assessment there are 2 additional checks that can
be performed before or after the assessment: the career check and the medical
history check. A career check with a coverage lower than 15 years is required if
the application assessment is simple (responded existence constraint C6). The
career of the applicant should be checked with a coverage higher than 15 years
if the application assessment is complex (responded existence constraint C7).
If the career check covers less than 5 years, a medical history check should be
performed immediately after and its cost is lower than 100 euros (chain response
constraint C8). If the career check covers more than 5 years, the medical history
check is more complex and more expensive (its cost is higher than 100 euros).
This behavior is described by chain response constraint C9 in Figure 1. If the
outcome of an application assessment is notified and the result of the outcome is
accepted, then this event is always preceded by an application submission whose
applicant has a salary higher than 12 000 euros per year (precedence constraint
C10).

4. Enhancing Declare Rules with Data-Aware Conditions

We propose two alternative approaches to discover data-aware rules from
event logs. The outline of these two approaches is shown in Figure 2.

Figure 2: Outline of the proposed approaches

Both approaches start from the extraction of instances of Declare con-
straints discovered from the log. The discovery of Declare constraints is car-

8



ried out using the approach presented in [19]. In this paper, we assume that the
discovered Declare constraints are already given and we enhance them with
data-aware conditions. A constraint instance is a pair of an activation and the
corresponding target activity of a Declare constraint. Both activation and
target are also equipped with the corresponding payloads. We extract activa-
tion and target payloads of each constraint instance to form a set of (unlabeled)
fulfillment feature vectors. Activations that cannot be associated to any target
(representing a violation of the constraint) are put into violation feature vectors
and labeled as violated.

In the first approach, the target payloads of previously obtained fulfillment
feature vectors are clustered to find groups of targets with similar payloads. For
each cluster its description is discovered. These descriptions are used as labels in
combination with the activation payloads to generate a set of labeled fulfillment
feature vectors. The labeled violation and fulfillment feature vectors are then
used as input for rule mining. This procedure allows for finding correlations
between the activation payloads and the target payloads.

In the second approach, we apply redescription mining algorithms using both
the features of activation and target payloads. There are two major types of
redescription mining algorithms. The first family of algorithms proposes to grow
two decision trees in an alternating way and then join them in the leaves. By
traversing the obtained trees, we can get the correlations between activation and
target payloads. An alternative technique is to extend the correlations greedily
starting from the simplest ones (containing one literal from each side). In this
paper, we consider both approaches. Note that the core parts of our approaches
(highlighted with blue rectangles in Figure 2) are independent of the procedure
used to extract constraint instances. Thus they can be used in combination
with any approach for constraint instances extraction.

4.1. Constraint Instances Extraction

The first step of the algorithm is to extract the instances of a given Declare
constraint. This is done by creating two vectors idx1 and idx2 that represent
activation and target occurrences. Then, the algorithm processes each trace in
the input log to find the events corresponding either to the activation or to the
target of the constraint, and their indexes are collected in the corresponding
vector. For example, for trace t = SSSASASSA and Response(S,A), we have
idx1 = (1; 2; 3; 5; 7; 8) and idx2 = (4; 6; 9). Then, based on the template, the
number of constraint instances is computed as follows:

• (Not) Response. For each element idx1i, from the activation vector idx1, we
take the first element idx2j from the target vector idx2 that is greater than
idx1i.

• (Not) Chain Response. Here, we check the existence of pairs (i,j) from idx1

and idx2 where j − i = 1.

• Alternate Response. In this case, for each element idx1i from idx1, we take
the first element idx2j from idx2 that is greater than idx1i. However, we identify

9



Table 3: Constraint instances of type (S,A) in trace t

Candidate Constraint Constraint Instances
Response(S,A) {S1A1}, {S2A1}, {S3A1}, {S4A2}, {S5A3}, {S6A3}
Chain Response(S,A) {S3A1}, {S4A2}, {S6A3}
Alternate Response(S,A) {S3A1}, {S4A2}, {S6A3}
Precedence(S,A) {S3A1}, {S4A2}, {S6A3}
Chain Precedence(S,A) {S3A1}, {S4A2}, {S6A3}
Alternate Precedence(S,A) {S3A1}, {S4A2}, {S6A3}
Responded Existence(S,A) {S1A1}, {S2A1}, {S3A1}, {S4A1}, {S5A1}, {S6A1}

Table 4: Constraint instances of type (A,S) in trace t

Candidate Constraint Constraint Instances
Response(A,S) {A1S4}, {A2S5}
Chain Response(A,S) {A1S4}, {A2S5}
Alternate Response(A,S) {A1S4}, {A2S5}
Precedence(A,S) {A1S4}, {A2S5}, {A2S6}
Chain Precedence(A,S) {A1S4}, {A2S5}
Alternate Precedence(A,S) {A1S4}, {A2S5}
Responded Existence(A,S) {A1S1}, {A2S1}, {A3S1}

a constraint instance only if there are no elements from idx1 that lie between
idx1i and idx2j .

• Precedence. For precedence, chain precedence and alternate precedence, the
logic is almost the same as for their response counterparts. However, for prece-
dence rules, the idx1 is considered as target vector and idx2 as activation vector.
In addition, idx1 has to be reversed.

• (Not) Responded Existence. We associate each element idx1i from the
activation vector idx1, with the first element from the target vector idx2.

Note that, here, to extract constraint instances, we consider the closest pairs
of activation and target occurrences. However, the approach is easily adaptable
to use other strategies for constraint instances extraction. If we enumerate the
occurrences of S and A in t, we have t = S1S2S3A1S4A2S5S6A3. The constraint
instance that consists of activation and target is called constraint fulfillment.
The constraint fulfillments of the standard Declare templates instantiated
with activities (A,S) and (S,A) are listed in Table 3 and in Table 4.

The procedures used to identify constraint fulfillments are also used to iden-
tify constraint violations (i.e., activations that cannot be associated to any tar-
get). The constraint fulfillments are used to create fulfillment feature vectors,
while constraint violations are used to generate violation feature vectors. We
stress again that these procedures only provide an example of how to identify
temporal patterns in a log. Any semantics (also beyond standard Declare)
can be used to identify frequent constraints.

4.2. Features Encoding

Fulfillment and violation constraints are used to create a set of fulfillment
and violation feature vectors, respectively. Fulfillment feature vectors consist

10



of the payloads of activations and targets, while violation feature vectors con-
sist of the payloads of activations only. Violation feature vectors do not have
a corresponding target and are labeled as “violated”. Assume to have a con-
straint instance where the activation Submit Loan Application has a payload
(12 500, 55 000) (see section 2.3). If this activation cannot be associated to any
target, we generate the violation feature vector:

Vviol = [(12 500, 55 000); violated]. (1)

If the same activation is part of a constraint instance of a frequent constraint
with target Assess Application and payload (Complex, 140), we generate the
(unlabeled) fulfillment feature vector:

Vful = [(12 500, 55 000); (Complex, 140)]. (2)

Violation and fulfillment feature vectors are then used as the main input
data for the core parts of our approaches.

4.3. Approach 1: Clustering + Rule Mining

Starting from the fulfillment feature vectors,1 we use clustering to find groups
of payloads that are similar. In particular, a modification of the K-Medoids
clustering algorithm is used. With this modification, we can handle categorical
attributes as well as numerical ones. In order to compute the distance between
two feature vectors, we use the Gower distance

d(i, j) =
1

n

n∑
f=1

d
(f)
i,j , (3)

where n denotes the number of features, while d
(f)
i,j is the distance between

feature vectors i and j, when considering only feature f. d
(f)
i,j is a normalized

distance. For nominal attributes, we calculate the distance as follows:

d
(f)
i,j =

{
0, if x

(f)
i = x

(f)
j

1, if x
(f)
i 6= x

(f)
j .

(4)

For interval scaled attribute values, we use the distance:

d
(f)
i,j =

|x(f)
i − x(f)

j |
max−min

, (5)

where max and min are the maximum and minimum observed values of attribute
f.

1In our experiments, we also build the fulfillment feature vectors with the target payloads
only instead of using the combination of activation and target payloads.

11



At each iteration of the K-Medoids algorithm, we compute the number of
centroids, equal to the number of clusters, in a way that: 1) for categorical
attributes, the most frequent value is taken; 2) for numerical attributes, the
average value is computed. For each computed centroid, the closest real feature
vector is assigned as being a medoid of the current iteration. After obtaining the
medoids, the feature vectors are relabeled correspondingly and the next iteration
starts. The clustering stops when medoids are converged to some feature vectors
or after N iterations, where N is given as input parameter.

Once the clusters have been constructed, we apply a direct rule-based clas-
sification algorithm called RIPPER (Repeated Incremental Pruning to Produce
Error Reduction) to search for their distinct features that could be used to de-
scribe them. In particular, we build the classifier by using as feature vectors
the projections of the fulfillment feature vectors on the target payloads and the
clusters ids as labels. In this way, we can describe each cluster in terms of
characteristics of target payloads in that cluster. The algorithm builds the rules
greedily by adding a new condition using the conjunction operator as long as
information gain improves. The initially obtained rule set is then pruned and
simplified. The output of RIPPER is a decision table. For a 2-class problem,
RIPPER selects one class as positive and the other as negative, and then learns
rules for the positive class. The negative class is described by the default rule
(none of the above rules are satisfied). For multi-class problems, it picks the
class with the smallest prevalence (fraction of instances that belong to a class)
and considers it as the positive class, while all the other classes are considered
to be negative. In such a way, it transforms a multi-class problem into a 2-class
problem. When the rules for the positive class are discovered, this class is not
considered anymore and the algorithm picks the next smallest class as positive
class, while correspondingly treating the other classes as negative. The proce-
dure repeats until 2 classes are left. Then it solves the 2-class problem as it
was described before and the class with the largest representation becomes the
default class.

Figure 3 shows two clusters (Cluster1 and Cluster2) associated with the re-
sponse constraint with target Assess Application (colored in green and red re-
spectively). We use a bidimensional representation here to show that the clusters
can be characterized using the Assessment Cost attribute (Assessment Cost ≤
100 and Assessment Cost > 100, respectively) and the Assessment
Type attribute (Assessment Type = Simple and Assessment Type =
Complex, respectively). In particular, the conjunction Assessment Cost ≤
100 ∧ Assessment Type = Simple characterizes Cluster1, whereas the
conjunction Assessment Cost > 100 ∧ Assessment Type = Complex char-
acterizes Cluster2. These clusters/conditions are used as labels to build labeled
fulfillment feature vectors. The features of the labeled fulfillment feature vectors
come from the projections of the fulfillment feature vectors on the activation
payloads.

Assume again to have a constraint instance where the activation Sub-
mit Loan Application has a payload (12 500, 55 000). If this activation is
part of a constraint instance with target Assess Application and payload

12



Figure 3: Bidimensional descriptions of clusters of fulfillment feature vectors in terms of
characteristics of target payloads

(Complex, 140), we generate the labeled fulfillment feature vector:

V ′ful = [(12 500, 55 000);Cluster2]. (6)

Labeled fulfillment feature vectors and violation feature vectors are used as
input data to RIPPER again. This time, the output of RIPPER provides a set
of rules that correlates payloads of activations and targets of a given Declare
constraint.

4.4. Approach 2: Redescription Mining

Redescription mining is a family of unsupervised descriptive knowledge dis-
covery approaches that aim at finding correlations between subsets of elements in
a dataset by using two or more disjoint sets of descriptive attributes. In particu-
lar, the input of a redescription mining algorithm is a tuple (E, VL, VR, AL, AR),
where E denotes a set of entities that are characterized by two different views
VL and VR, respectively. These views are described by two sets of attributes AL

and AR. In our case, the entities are the fulfillment feature vectors, the views
VL and VR represent activations and targets of these vectors, and AL and AR

are the attributes of their corresponding payloads.
The output of the algorithm is a set of redescriptions R that describe re-

lations between the two different views. In particular, a redescription r ∈ R
is a logical formula that consists of two parts, rL and rR, where rL contains
literals from AL, and rR consists of literals from AR, respectively. For exam-
ple, for a redescription Amount > 100 000 => Assessment Type 6= Simple,
Amount > 100 000 represents rL, and Assessment Type 6= Simple is rR.

There are two types of redescription mining approaches. The first approach
is based on classification and regression trees. The main idea is to iteratively

13



Figure 4: Tree-based approach to redescription mining

Table 5: Redescriptions discovered from the trees in Figure 4

Redescriptions
1 Amount > 100 000 => Assessment Type 6= Simple
2 Amount ≤ 100 000 & Salary > 24 000 => Assessment Type = Simple
3 Amount ≤ 100 000 & Salary ≤ 24 000 & Amount > 50 000 => Assessment Type 6= Simple
4 Amount ≤ 100 000 & Salary ≤ 24 000 & Amount ≤ 50 000 => Assessment Type = Simple

grow two decision trees (one for each view) that will be joined in their leaves.
The trees grow in an alternating way, meaning that the prediction vector derived
for one tree in a certain step is used to grow the other tree in the next step.

Figure 4 illustrates the application of this approach for the response con-
straint with activation Submit Loan Application (left hand side) and tar-
get Assess Application (right hand side). As can be seen, there are two
classes of behaviors (colored in green and red), i.e., when Amount > 100 000,
or Amount > 50 000 and Salary ≤ 24 000, then Assessment Type 6= Simple,
in all the other cases Assessment Type = Simple. The redescriptions are ob-
tained by traversing the trees from the root node of the first tree to the root
node of the second one. Table 5 shows the redescriptions derived from the trees
in Figure 4.

An alternative approach is to grow the redescriptions greedily, starting from
a pair of singleton queries (i.e., one variable on each side) and extending them
by appending a literal on either side using conjunctions or disjunctions. This
procedure can be stopped when the maximum length of a query is reached
or when the addition of a new condition does not improve the accuracy of the
redescription. In this paper, we will consider a tree-based redescription approach
called SplitT [20] and a greedy algorithm called ReReMi [21].

14



5. Evaluation

We implemented the Clustering + Rule Mining approach as an open-source
prototype tool,2 while, for the Redescription Mining approach, we configured
an existing redescription mining tool, i.e., Siren.3 We used these two tools to
conduct a series of experiments aimed at understanding the relative strengths
of the two discovery approaches. In particular, we wanted to examine their
capability to rediscover the behavior injected into an artificial log, and assess
their scalability (using both artificial and real-life logs) and their applicability
to real-life event logs. Accordingly, we investigated the following three research
questions:

• RQ1. Which of the approaches better rediscovers constraints artificially
injected into an event log?

• RQ2. How do the approaches perform relative to each other in terms of
execution time?

• RQ3. What are the characteristics of the constraint sets generated by
the proposed approaches when applied to real-life logs?

RQ1 focuses on the evaluation of the rediscovery accuracy of the proposed
approaches. RQ2 investigates the scalability of the approaches. RQ3 deals with
the validation of the discovery approaches in real scenarios. The characteris-
tics evaluated with RQ3 are the number of data conditions discovered for a
single original control-flow constraint, their complexity, and also support and
confidence of the enhanced constraints. In this evaluation, we call support of a
constraint the percentage of feature vectors of that constraint where both acti-
vation and target conditions hold (over the total number of feature vectors for
that constraint), and confidence the percentage of feature vectors where both
activation and target conditions hold over the number of feature vectors where
the activation condition holds.

5.1. Datasets

The artificial logs used in this evaluation were generated using the MP-
Declare Log Generator tool [22]. To answer RQ1, we generated a log by
simulating the model in Figure 1. This log contains 5000 cases with average
length of 5 events, leading to a total of 25 000 events. In order to have a suffi-
cient number of feature vectors available, the activities that are involved in the
constraints of the model (Submit Loan Application, Assess Application,
Notify Outcome, Check Career, Check Medical History) appear in
every case, leading to over 5000 feature vectors for each constraint.

There are two factors that affect the execution time of the algorithms (in-
vestigated with RQ2): the number of feature vectors and the payload size. In

2Available at https://doi.org/10.6084/m9.figshare.10565906.v2
3Available at http://siren.gforge.inria.fr/main/index.html

15



Table 6: Characteristics of the real-life logs

Dataset No. of No. of No. of Payload No. of Case No. of Event
Cases Events Activities Size Attributes Attributes

BPIC 2011 1140 149 730 622 9 4 5
BPIC 2013 (closed problems) 1487 6660 7 8 3 5
BPIC 2013 (incidents) 7554 65 533 13 8 3 5
BPIC 2013 (open problems) 819 2351 5 8 3 5
BPIC 2017 31 509 561 671 26 13 3 10
Sepsis 868 12 857 18 28 24 4
Traffic Fines process 150 370 561 470 11 13 8 5

order to assess how the former factor affects the execution time, we created
a set of artificial logs with growing number of feature vectors for one specific
MP-Declare constraint (1000, 5000, 10 000, 20 000, 30 000, 50 000 and 100 000
feature vectors), with a default payload size of 6 attributes. To assess the im-
pact of the latter factor, we generated a set of artificial logs with increasing
event payload size (5, 10, 15, 20, 25 and 30 attributes), with a default number
of feature vectors equal to 1000.

In addition to these artificial logs, we used seven real-life logs for answering
RQ2 and RQ3. We considered all real-life event logs from the 4TU Data Center
collection4 having at least three event payload attributes. These are BPIC
2011,5 all the logs of BPIC 2013,6,7,8 BPIC 2017,9 Sepsis,10 and the Road Traffic
Fine Management log.11 These logs cover various domains such as healthcare,
IT support management, banking and public administration. The logs were
preprocessed by deleting those cases that contain missing values in the event
payloads and by removing redundant attributes (i.e., case attributes that always
have the same value in a case or attributes that do not store any valuable
information that can be used to discriminate the different clusters of behaviors,
e.g., the ”Variant” attribute in the Sepsis log or the “EventID” attribute in
BPIC 2017). For the BPIC 2017 log, we also removed duplicated events. An
overview of the logs’ characteristics is provided in Table 6. All the logs used in
evaluation as well as instructions on how to reproduce experiments are publicly
available.12

5.2. RQ1: Rediscovery Accuracy

The objective of this first experiment was to test whether the proposed
approaches are able to rediscover the original constraints that were injected
into a synthetic log. The constraints in question are those shown in Figure 1.

4https://data.4tu.nl/repository/collection:event_logs_real
5doi:10.4121/d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
6doi:10.4121/c2c3b154-ab26-4b31-a0e8-8f2350ddac11
7doi:10.4121/10.4121/500573e6-accc-4b0c-9576-aa5468b10cee
8doi:10.4121/10.4121/3537c19d-6c64-4b1d-815d-915ab0e479da
9doi:10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

10doi:10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
11doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
12https://doi.org/10.6084/m9.figshare.10565906.v2

16



Table 7: Rediscovery results: K-Medoids + RIPPER (k = 2 for K-Medoids, clustering target
payloads only)

Template Activation/Target Activation/Target Condition Support Confidence

(C1) Response Submit Loan Application Salary ≤ 24000 & Amount ≥ 51000 0.31 1.0
Assess Application Assessment Cost ≥ 110

(C2) Response Submit Loan Application Amount ≥ 101000 0.28 1.0
Assess Application Assessment Cost ≥ 110

(C3, C4) Response Submit Loan Application ¬(Amount ≥ 101000) & ¬(Salary ≤ 24000 & Amount ≥ 51000) 0.56 1.0
Assess Application Assessment Cost < 110

(C5) Response Submit Loan Application Salary ≥ 71000 0.09 1.0
Notify Outcome Result = Accepted

Response Submit Loan Application ¬(Salary ≥ 71000) 0.61 0.67
Notify Outcome Result 6= Accepted

(C7) Responded Existence Assess Application Assessment Cost ≥ 110 0.44 1.0
Check Career Coverage ≥ 14

(C6) Responded Existence Assess Application ¬(Assessment Cost ≥ 110) 0.53 0.95
Check Career Coverage < 14

(C9) Chain Response Check Career Coverage ≥ 6 0.47 0.80
Check Medical History Cost ≥ 150

(C8) Chain Response Check Career ¬(Coverage ≥ 6) 0.41 1.0
Check Medical History Cost < 150

Precedence Submit Loan Application Salary ≤ 35000 0.33 0.54
Notify Outcome Result = Rejected

(C10) Precedence Submit Loan Application Salary > 35000 0.26 0.67
Notify Outcome Result 6= Rejected

We evaluated two different variants of the K-Medoids + RIPPER approach:
one (described in Sect. 4.3), where the fulfillment feature vectors to be clustered
contain both the activation and target payloads, and a variant of it, where the
fulfillment feature vectors only contain target payloads. In this way, we tested
whether the information about activation payloads in the clustering phase is
relevant to improve the accuracy of the results. For the Redescription Mining
approach, we used the ReReMi algorithm with default settings and the SpliT
algorithm with maximum tree depth of 100 and minimum size of a node equal
to 5% of the number of feature vectors.

To measure the rediscovery accuracy we used recall, precision, and F-score.
In this setting, recall is the percentage of injected constraints that were correctly
rediscovered, while precision represents the fraction of discovered constraints
that match the injected behavior. F-score is the harmonic mean of precision
and recall.

The constraints discovered by the algorithms are shown in Tables 7–10. The
constraints that were correctly re-discovered are marked in bold and the id
identifying the constraint in the original model in Figure 1 is specified between
brackets. Sometimes a constraint was not correctly re-discovered, but instead a
semantically similar version of it was discovered. In this case, the id identifying
the constraint in the original model is specified between brackets, but the row
is not marked in bold.

As we can see from the tables, sometimes the rediscovered constraints were
not the same as the injected ones, but they were semantically identical (e.g.,
“Simple Assessment” always goes in pair with “Assessment Cost” lower than
or equal to 100, therefore these two conditions are interchangeable). The vari-
ant of K-Medoids + RIPPER that clusters only target payloads discovered a
less accurate set of constraints when compared to its alternative (clustering of
both activation and target payloads). In particular, often, in the former, the
wrong separating point between clusters (e.g., Cost < 150 and Cost ≥ 150) was

17



Table 8: Rediscovery results: K-Medoids + RIPPER (k = 2 for K-Medoids, clustering acti-
vation and target payloads)

Template Activation/Target Activation/Target Condition Support Confidence

(C1) Response Submit Loan Application Salary ≤ 24000 & Amount ≥ 51000 0.31 1.0
Assess Application Assessment Cost ≥ 110

(C2) Response Submit Loan Application Amount ≥ 101000 0.28 1.0
Assess Application Assessment Cost ≥ 110

(C3, C4) Response Submit Loan Application ¬(Amount ≥ 101000) & ¬(Salary ≤ 24000 & Amount ≥ 51000) 0.56 1.0
Assess Application Assessment Cost < 110

(C5) Response Submit Loan Application Salary ≥ 71000 0.09 1.0
Notify Outcome Result = Accepted

Response Submit Loan Application ¬(Salary ≥ 71000) 0.61 0.67
Notify Outcome Result 6= Accepted

(C7) Responded Existence Assess Application Assessment Cost ≥ 110 0.44 1.0
Check Career Coverage ≥ 16

(C6) Responded Existence Assess Application ¬(Assessment Cost ≥ 110) 0.56 1.0
Check Career Coverage < 16

(C8) Chain Response Check Career Coverage ≤ 5 0.41 1.0
Check Medical History Cost ≤ 100

(C9) Chain Response Check Career ¬(Coverage ≤ 5) 0.59 1.0
Check Medical History Cost > 100

(C10) Precedence Submit Loan Application Salary ≥ 71000 0.09 0.23
Notify Outcome Result = Accepted

Precedence Submit Loan Application Salary < 71000 0.61 1.0
Notify Outcome Result 6= Accepted

Table 9: Rediscovery results: ReReMi

Template Activation/Target Activation/Target Condition Support Confidence

(C3) Response Submit Loan Application Salary ≥ 25000 & Amount ≤ 99000 0.55 1.0
Assess Application Assessment Type = Simple

(C3) Response Submit Loan Application Salary ≥ 25000 & Amount ≤ 99000 0.55 1.0
Assess Application Assessment Cost ≤ 100

Response Submit Loan Application Amount ≤ 138000 0.76 0.92
Assess Application Assessment Cost ≤ 210

Response Submit Loan Application Amount ≤ 99000 0.56 0.78
Assess Application Assessment Type = Simple

Response Submit Loan Application Salary ≤ 24000 0.31 0.96
Assess Application Assessment Cost ≥ 110

Response Submit Loan Application Amount ≥ 139000 0.05 0.29
Assess Application Assessment Cost ≥ 220

Response Submit Loan Application Salary ≤ 70000 0.61 0.67
Notify Outcome Result = Rejected

(C6) Responded Existence Assess Application Assessment Type = Simple 0.56 1.0
Check Career Coverage ≤ 15

(C7) Responded Existence Assess Application Assessment Type = Complex 0.44 1.0
Check Career Coverage ≥ 16

(C6) Responded Existence Assess Application Assessment Cost ≤ 100 0.56 1.0
Check Career Coverage ≤ 15

(C7) Responded Existence Assess Application Assessment Cost ≥ 110 0.44 1.0
Check Career Coverage ≥ 16

(C8) Chain Response Check Career Coverage ≤ 5 0.41 1.0
Check Medical History Cost ≤ 100

(C9) Chain Response Check Career Coverage ≥ 6 0.59 1.0
Check Medical History Cost ≥ 110

Precedence Submit Loan Application Salary ≤ 70000 0.61 1.0
Notify Outcome Result = Rejected

selected.
The SplitT algorithm did not discover any constraints involving numerical

attributes only (e.g., C8, C9). On the other hand, ReReMi discovered sev-
eral redundant constraints describing the same behavior from different angles
(see e.g., the first two constraints in Table 9). Although SplitT discovered the
smallest number of constraints, the complexity of their data conditions is the
highest. In contrast, ReReMi discovered the largest number of constraints with
the smallest average length of the data conditions (both activation and target

18



Table 10: Rediscovery results: SplitT

Template Activation/Target Activation/Target Condition Support Confidence

(C1) Response Submit Loan Application Amount ≥ 51000 & ¬(Salary ≥ 25000) & ¬(Amount ≥ 101000) 0.158 1.0
Assess Application Assessment Type! = Simple

(C2) Response Submit Loan Application Amount ≥ 101000 0.28 1.0
Assess Application Assessment Type 6= Simple

(C3) Response Submit Loan Application Salary ≥ 25000 & ¬(Amount ≥ 101000) 0.55 1.0
Assess Application Assessment Type = Simple

(C4) Response Submit Loan Application ¬(Amount ≥ 51000) & ¬(Salary ≥ 25000) & ¬(Amount ≥ 101000) 0.01 1.0
Assess Application Assessment Type = Simple

(C6) Responded Existence Assess Application Assessment Type = Simple 0.56 1.0
Check Career ¬(Coverage ≥ 16)

(C7) Responded Existence Assess Application ¬(Assessment Type = Simple) 0.44 1.0
Check Career Coverage ≥ 16

Precedence Submit Loan Application ¬(Salary ≥ 71000) 0.61 1.0
Notify Outcome Result = Rejected

(C10) Precedence Submit Loan Application Salary ≥ 71000 0.09 0.23
Notify Outcome ¬(Result = Rejected)

Table 11: Rediscovery accuracy

Approach Rules discovered Recall Precision F-score
K-Medoids+RIPPER (clustering target payloads only) 11 0.5 0.36 0.43
K-Medoids+RIPPER (clustering activation+target payloads) 11 0.9 0.72 0.81
ReReMi 14 0.5 0.43 0.46
SplitT 8 0.6 0.75 0.67

conditions mostly consist of one atomic condition only).
Table 11 reports the rediscovery accuracy in terms of number of constraints

discovered, recall, precision, and F-score for all four approaches. The results
show that K-Medoids + RIPPER with clustering of activation and target pay-
loads was able to rediscover almost all the original constraints (with a recall of
0.9). Meanwhile, SplitT achieved the highest rediscovery precision (0.75). Over-
all, K-Medoids + RIPPER with clustering of activation and target payloads has
the highest F-score. Given that clustering of both activation and target pay-
loads clearly leads to higher rediscovery precision and recall than clustering of
only the target payloads, in the next experiments, we only consider the former
variant.

We also checked how rediscovery precision and recall are affected by the
number of clusters for the K-Medoids + RIPPER approach (with clustering of
both activation and target payloads). The results are shown in Figure 5. We
observe that the number of clusters significantly affects the rediscovery accu-
racy. As the number of clusters increases starting from the original one (in this
particular case, 2), precision and recall decrease to the point that it is no longer
possible to rediscover any originally-injected behavior.

5.3. RQ2: Scalability

We tested the scalability of the three approaches (K-Medoids + RIPPER
clustering of activation and target payloads, ReReMi and SplitT) on both arti-
ficial and real-life logs. Specifically, we measured how the execution time varies
based on the size of the log in terms of number of feature vectors and event
payload size. The experiments have been run on a Windows 10 x64 machine,
equipped with Intel Core i5-52000U CPU 2.20 GHz, using 16GB of memory.

19



(a) Number of clusters VS Recall (b) Number of clusters VS Precision

Figure 5: Number of clusters VS Rediscovery Accuracy

0

20

40

60

80

100

120

140

160

180

0 20000 40000 60000 80000 100000

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Feature vectors

K-medoids + RIPPER SplitTree ReReMi

(a) Varying the number of feature vectors

0

20

40

60

80

100

120

5 10 15 20 25 30

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Payload size

K-medoids + RIPPER SplitTree

(b) Varying the payload size

Figure 6: Scalability results (artificial logs)

Table 12: Scalability results (real-life logs)

Dataset K-medoids + K-medoids + K-medoids + SplitT ReReMi
RIPPER (k = 2) RIPPER (k = 5) RIPPER (k = 10)

BPIC 2011 7.004 12.904 22.489 60.612 128.220
BPIC 2013 (closed problems) 3.727 4.781 6.133 42.814 167.327
BPIC 2013 (incidents) 13.852 20.549 38.667 112.569 205.404
BPIC 2013 (open problems) 2.967 4.222 5.469 61.849 145.925
BPIC 2017 26.927 65.419 133.208 76.925 237.278
Sepsis 4.434 6.339 11.517 1.032 3.359
Traffic Fines process 175.944 542.911 1364.352 38.669 31.598

The results are shown in Figure 6. We can see that the execution time
of K-Medoids + RIPPER has a stronger dependency on the total number of
feature vectors than the two Redescription Mining approaches. In particular,
the execution time for K-Medoids + RIPPER rapidly rises with the increase of
the total number of feature vectors. On the other hand, the execution time for K-
Medoids + RIPPER is less sensitive to the payload size. Note that, in Figure 6b,
we do not report the execution time of ReReMi since it is exponentially growing
from around 300 seconds for a payload of size 5 to more than 1 hour for a
payload with 15 attributes.

For evaluating the scalability of the approaches on the real-life logs, we used
K-Medoids + RIPPER with three different settings (k equal to 2, 5 and 10),
ReReMi with default settings and SpliT with maximum tree depth of 100 and
minimum size of a node equal to 5% of the number of feature vectors. The
results are presented in Table 12.

In most cases, K-Medoids + RIPPER outperforms the other approaches
in terms of time performance. This can be observed for all logs except for

20



the Road Traffic Fines Management and Sepsis logs. This can be related to
the fact that these logs contain a weaker signal (smaller event payloads for
Sepsis, shorter traces for Road Traffic Fines Management), which also leads
Redescription Mining approaches to discover less data conditions.

5.4. RQ3: Characteristics of the Discovered Data Conditions using Real-Life
Logs

To answer RQ3, we used the real-life logs to discover a set of control-flow
Declare constraints with the Declare Miner [19]. Then, for each discovered
control-flow constraint, we ran all the proposed approaches, recording the num-
ber of discovered data conditions, their average length, and the average support
and confidence of the MP-Declare constraints derived from the original De-
clare constraint. Finally, we computed the average of each of the recorded
metrics over all the discovered Declare constraints. The setup of each ap-
proach is the same as the one used to answer RQ2 (see Section 5.3). The results
are presented in Table 13.

Table 13: Rule-set characteristics on real-life logs

Dataset Approach Avg. No. of Avg. condition Avg. confidence Avg. support
conditions length

B
P

IC
20

11

K-medoids + RIPPER (k = 2) 2.75 2.97 0.943 0.379
K-medoids + RIPPER (k = 5) 4.00 2.86 0.764 0.177
K-medoids + RIPPER (k = 10) 3.74 3.35 0.752 0.146
SplitT 32.35 2.72 0.993 0.152
ReReMi 59.00 3.77 0.973 0.172

B
P

IC
20

13
1 K-medoids + RIPPER (k = 2) 2.33 2.99 0.982 0.445

K-medoids + RIPPER (k = 5) 4.06 3.05 0.806 0.194
K-medoids + RIPPER (k = 10) 4.22 3.03 0.760 0.151
SplitT 21.83 2.20 0.966 0.222
ReReMi 98.72 3.50 0.921 0.260

B
P

IC
20

13
2 K-medoids + RIPPER (k = 2) 2.00 2.13 0.948 0.527

K-medoids + RIPPER (k = 5) 3.47 2.98 0.835 0.243
K-medoids + RIPPER (k = 10) 4.33 3.43 0.763 0.174
SplitT 22.56 2.24 0.954 0.202
ReReMi 99.33 4.11 0.953 0.177

B
P

IC
20

13
3 K-medoids + RIPPER (k = 2) 2.27 2.68 0.977 0.482

K-medoids + RIPPER (k = 5) 4.09 3.08 0.841 0.212
K-medoids + RIPPER (k = 10) 4.64 3.33 0.801 0.155
SplitT 27.45 2.09 0.974 0.193
ReReMi 95.09 2.78 0.977 0.160

B
P

IC
20

17

K-medoids + RIPPER (k = 2) 2.32 2.49 0.803 0.394
K-medoids + RIPPER (k = 5) 3.32 4.20 0.616 0.185
K-medoids + RIPPER (k = 10) 2.74 3.89 0.462 0.134
SplitT 21.63 2.90 0.990 0.228
ReReMi 50.89 4.85 0.940 0.296

S
ep

si
s

K-medoids + RIPPER (k = 2) 1.16 2.63 0.888 0.812
K-medoids + RIPPER (k = 5) 1.47 2.84 0.647 0.527
K-medoids + RIPPER (k = 10) 1.82 3.48 0.573 0.419
SplitT - - - -
ReReMi - - - -

T
ra

ffi
c

F
in

es K-medoids + RIPPER (k = 2) 2.00 2.46 0.814 0.457
K-medoids + RIPPER (k = 5) 3.00 4.30 0.661 0.238
K-medoids + RIPPER (k = 10) 3.29 4.12 0.667 0.201
SplitT 8.57 4.24 0.853 0.293
ReReMi 8.07 3.88 0.843 0.442

From Table 13, we can see that K-Medoids + RIPPER with k equal to 2
discovers the smallest number of data conditions, while keeping the constraint

21



confidence high (always greater than 0.8). Overall, K-Medoids + RIPPER pro-
duces less conditions than the two Redescription Mining approaches. This is
due to the fact that RIPPER minimizes the number of conditions discovered,
and these conditions do not overlap. On the other hand, ReReMi and SpliT try
to discover all possible conditions that satisfy the filter criteria. Often, this leads
to discovering redundant rules. On the other hand, the Redescription Mining
approaches tend to discover rules with very high confidence, while we can see
that, for K-Medoids + RIPPER, the confidence of the discovered constraints
decreases as k increases.

5.5. Threats to validity

A possible threat to internal validity is posed by the use of a single log to
address RQ1 (rediscovery accuracy). The log is generated using a limited set
of constraints and these constraints are relatively simple, not involving a high
number of attributes at the same time. To mitigate this threat, we decided to
address RQ1 at a qualitative level instead of approaching this question quanti-
tatively. In particular, we tried to rediscover constraints of different types, and
with data conditions involving both categorical and numerical attributes.

A further threat to internal validity is the limited use of parameter values
to configure the approaches at hand. Specifically, in the case of ReReMi and
SpliT, we used default parameters and increased the maximal depth of the trees
only, while in the case of K-Medoids + RIPPER, we used k equal to 2, 5 and
10.

A potential threat to external validity is given by the use of a limited number
of real-life logs (seven). However, these logs originate from different domains
and exhibit different characteristics, providing a good representative set of real-
life event logs. To ensure the full reproducibility of the results, we have released
all the preprocessed real-life logs as well as the ones artificially generated used
in our experiments.

6. Conclusion

We presented two approaches to enhance Declare constraints with data
conditions that relate the occurrence of pairs of events in a case of an event log
(correlated data conditions). The first approach combines clustering and rule
mining techniques, while the second approach relies on Redescription Mining.

Overall, the experimental results show that the clustering-based approach
outperforms Redescription Mining in terms of its ability to rediscover constraints
artificially injected in a log, in terms of number of conditions discovered (lower
number of conditions), and in terms of computational efficiency, when the num-
ber of feature vectors is not significantly high. However, the experiments showed
that the accuracy of the clustering-based technique is highly dependent on the
number of clusters given in input. Hence, this technique requires careful param-
eter tuning.

22



The experiments also showed that the Redescription Mining approaches dis-
cover constraints with higher confidence (and lower support). This latter ob-
servation suggests that these techniques may be used to effectively discover
outlier behaviors, i.e., constraints that are less frequently activated, but, when
activated, are in most of the cases satisfied.

While we have shown that the proposed techniques address the problem of
discovering Declare constraints with correlated data conditions and that they
scale up to handle real-life event logs, the usefulness of the discovered rules in
practical settings still needs to be studied. In this respect, a possible avenue
for future work is to conduct case studies to determine if the sets of constraints
produced by the proposed techniques can provide insights to business analysts,
beyond what can be achieved by simply discovering plain (non-data-enhanced)
Declare constraints or, alternatively, by discovering procedural process models
enhanced with data conditions.

Acknowledgments. This work is partly supported by the Estonian Research
Council (IUT20-55) and by the Australian Research Council (DP180102839).

References

[1] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, H. A. Reijers,
Imperative versus declarative process modeling languages: An empirical
investigation, in: BPM Workshops, 2011, pp. 383–394.

[2] H. A. Reijers, T. Slaats, C. Stahl, Declarative modeling-An academic dream
or the future for BPM?, in: BPM, 2013, pp. 307–322.

[3] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: Full support
for loosely-structured processes, in: EDOC, 2007, pp. 287–300.

[4] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
S. Storari, Declarative Specification and Verification of Service Choreogra-
phies, ACM Transactions on the Web 4 (1).

[5] M. Weidlich, A. Polyvyanyy, J. Mendling, M. Weske, Causal behavioural
profiles - efficient computation, applications, and evaluation, Fundamenta
Informaticae 113 (3-4) (2011) 399–435.

[6] A. Polyvyanyy, M. Weidlich, R. Conforti, M. La Rosa, A. H. M. ter Hof-
stede, The 4c spectrum of fundamental behavioral relations for concurrent
systems, in: PETRI NETS 2014, 2014, pp. 210–232.

[7] V. Leno, M. Dumas, F. M. Maggi, Correlating activation and target condi-
tions in data-aware declarative process discovery, in: BPM 2018, 2018, pp.
176–193.

[8] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows:
Balancing between flexibility and support, Computer Science - R&D 23 (2)
(2009) 99–113.

23



[9] O. Kupferman, M. Y. Vardi, Vacuity detection in temporal model checking,
STTT 4 (2) (2003) 224–233.

[10] A. Burattin, F. M. Maggi, W. M. P. van der Aalst, A. Sperduti, Techniques
for a Posteriori Analysis of Declarative Processes, in: EDOC, Beijing, 2012,
pp. 41–50.

[11] F. M. Maggi, Declarative process mining with the Declare component of
ProM, in: BPM (Demos), 2013.

[12] A. Burattin, F. M. Maggi, A. Sperduti, Conformance checking based on
multi-perspective declarative process models, Expert Syst. Appl. 65 (2016)
194–211.

[13] F. M. Maggi, M. Dumas, L. Garćıa-Bañuelos, M. Montali, Discovering
data-aware declarative process models from event logs, in: BPM, Vol. 8094,
2013, pp. 81–96.

[14] R. P. J. C. Bose, F. M. Maggi, W. M. P. van der Aalst, Enhancing declare
maps based on event correlations, in: Business Process Management - 11th
International Conference, BPM 2013, Beijing, China, August 26-30, 2013.
Proceedings, 2013, pp. 97–112.

[15] S. Schönig, C. Di Ciccio, F. M. Maggi, J. Mendling, Discovery of multi-
perspective declarative process models, in: ICSOC, 2016, pp. 87–103.

[16] A. Rozinat, W. M. P. van der Aalst, Decision mining in ProM, in: BPM
2006, 2006, pp. 420–425.

[17] M. de Leoni, M. Dumas, L. Garćıa-Bañuelos, Discovering branching con-
ditions from business process execution logs, in: FASE 2013, 2013, pp.
114–129.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin, Dynamically discov-
ering likely program invariants to support program evolution, IEEE Trans.
Software Eng. 27 (2) (2001) 99–123.

[19] F. M. Maggi, R. P. J. C. Bose, W. M. P. van der Aalst, Efficient discovery
of understandable declarative process models from event logs, in: CAiSE
2012, 2012, pp. 270–285.

[20] T. Zinchenko, E. Galbrun, P. Miettinen, Mining predictive redescriptions
with trees, in: ICDMW 2015, 2015, pp. 1672–1675.

[21] E. Galbrun, P. Miettinen, From black and white to full color: extending
redescription mining outside the boolean world, Statistical Analysis and
Data Mining 5 (4) (2012) 284–303.

[22] V. Skydanienko, C. Di Francescomarino, C. Ghidini, F. M. Maggi, A tool
for generating event logs from Multi-Perspective Declare models, in: Dis-
sertation Award, Demonstration, and Industrial Track at BPM 2018, 2018,
pp. 111–115.

24


